Changelog¶
0.6.4 - Bugfixes¶
- Replaced usage of deprecated
scipy_mode. Fixed #39 - Fixed
ValueError: invalid literal for int() with base 10inpredict_qd. Fixed #40 - Added input validators to raise human-readable error messages when the input is not correct. Fixes #37
- Fixed
AttributeError: module 'numpy' has no attribute 'object'.. Fixes #38
0.6.3 - Bugfixes¶
- Fixed
ValueErrorwith recent versions ofSciPy, due to usage of sparse arrays with object dtype. Fixes #31 - Fixed
IndexErrorwhenNaNvalues are present in the dataframe. Fixes #28
0.6.2 - Warning filter¶
- Now filtering
UserWarninginfit_selector_modeleven in the sklearn adapter. Fixes #20
0.6.1 - Minor changes¶
- Now filtering
UserWarninginfit_selector_model. See #20 - New build system: now using
virtualenvinstead ofcondainnoxsessions. Fixes #23 - New project layout to avoid bug with
xunitparser. Fixes #18
0.6.0 - sklearn api renames¶
-
Migrated CI/CD from Travis to Github Actions +
nox. -
selector_sklmodule renamedsklearnandQDSSelectorrenamedQDScreen. Fixes #16
0.5.0 - First public working release¶
Initial release with:
- A main method
qd_screento get the (adjacency matrix of) the quasi-deterministic-forest, aQDForestobject with string representation of arcs (Fixes #8). - Possibility to
keep_statsso as to analyse the (conditional) entropies in order to define a "good" threshold. - A method
<QDForest>.fit_selector_model(X)to fit aQDSelectorModelfeature selection model able to select relevant features and to predict missing ones. Fixes #7 - Support for both pandas dataframes and numpy arrays as input. Fixes #2
- A Scikit-learn compliant feature selector
QDSSelector, providing the exact same functionality as above but compliant with scikit-learnPipelines. Fixes #1
Non-functional: